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We consider dc supercurrents in SNS junctions. Spin-orbit coupling in combination with Zeeman fields can
induce an effective vector potential in the normal conductor. As a consequence, an out-of-plane spin density
varying along the transverse direction causes a longitudinal phase difference between the superconducting
terminals. The resulting equilibrium phase-coherent supercurrent is analog to the nonequilibrium inverse spin
Hall effect in normal conductors. We explicitly compute the effect for the Rashba spin-orbit coupling in a
disordered two-dimensional electron gas with an inhomogeneous perpendicular Zeeman field.
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The spin Hall effect �SHE� and inverse SHE �ISHE� are
remarkable demonstrations of the influence of the spin-orbit
coupling on electron transport. Via this coupling, a longitu-
dinal electric current can induce a perpendicular spin current
and vice versa. These effects take place in metals and semi-
conductors, where the spin-orbit interaction �SOI� arises
from impurity scattering1 or band-structure effects.2 Utilizing
spin injection, SHE, and ISHE, electron spins can be con-
trolled, as recently demonstrated experimentally.3

We discuss the intrinsic SHE and ISHE, where the domi-
nant spin-orbit coupling is from the electron band structure.
The study of SHE has been focused on normal conductors,
e.g., normal metals and semiconductors. Interesting, and rich
physics occurs in superconductors where electron transport is
dissipationless and the ground state exhibits macroscopic co-
herence. Some superconductivity induced features of the in-
trinsic SHE have recently been analyzed in bulk
superconductors4 and superconductor-normal-
superconductor �SNS� Josephson junctions.5 The latter work
reveals an equilibrium spin accumulation at lateral sample
edges, similar to nonequilibrium spin accumulation in nor-
mal conductors, but the spin Hall current vanishes due to
time-reversal symmetry in the dc Josephson effect.

We focus on ISHE in Josephson junctions. There are two
scenarios depending on how the spin current �density� is cre-
ated in the normal metal. In a dissipative setup, additional
normal/ferromagnetic terminals in the transverse direction
inject a nonequilibrium spin current. Subsequently, the ISHE
induces an electric potential difference VSH between super-
conducting terminals, causing Josephson oscillations at fre-
quency 2eVSH /�. Transport is dissipative due to the spin
flow between transverse normal/ferromagnetic terminals.
This phenomenon is interesting from an experimental point
of view and we will study it quantitatively elsewhere, but we
consider here a dissipationless effect.

We present a inverse dissipationless SHE: an out-of-plane
equilibrium spin density spatially varying in the transverse
direction induces a longitudinal electric supercurrent.
Equivalently, it induces a phase shift between two supercon-
ducting terminals. In general, since the equilibrium spin den-
sity controls ISHE, Zeeman interaction from magnetic or ex-
change fields manipulates the resulting Josephson
supercurrent. As an explicit illustration, we consider the in-
terplay of spin-orbit coupling and Zeeman fields in a disor-

dered two-dimensional electron gas �2DEG�, and compute
the magnitude of the equilibrium Josephson ISHE.

The interplay of Zeeman field and SOI leading to an ef-
fective phase difference between superconducting terminals
has recently also been studied in two quite different systems,
but neither exhibits the ISHE we discuss: a supercurrent in
response to a spatially homogenous magnetic field occurs in
Josephson tunneling through a one-dimensional �1D� wire6

and appears in numerical simulations of the superconducting
transport through a ballistic point contact7 in a spatially ho-
mogenous parallel magnetic field. Note that a normal system
analog of the latter phenomenon is the spin-galvanic effect8

that is different from ISHE. In addition to our main finding
of an inverse SHE, we provide an improved understanding of
these phenomena by showing how the interplay of Zeeman
field and SOI can result in the appearance of an effective
electromagnetic vector potential. Such a vector potential, in
direct analogy with the Meissner effect, gives rise to a super-
current.

Let us outline our model. The spin-orbit interaction arises
from the band structure, Hso=� ·hk, where �= ��x ,�y ,�z� is
a vector of Pauli matrices. We assume that the spin-orbit field
hk is given by Rashba SOI where hx=�ky and hy =−�kx �Ref.
9�. Two examples of spin-density manipulations in 2DEG
will be considered: �i� a perpendicular to 2DEG Zeeman field
spatially varying in the transverse direction y, as shown in
Fig. 1 and �ii� a homogeneous Zeeman field directed along
the y axis. We will show that setup �i� exhibits an equilib-
rium inverse SHE. Setup ii� also changes the current-phase
relation in SNS contacts. All relevant length scales are as-
sumed larger than the mean-free path l=vF�, and we are in
the metallic regime kFl�1, where kF and vF are the Fermi
wave vector and velocity, respectively. These conditions al-
low a diffusion approximation in the description of electron
transport. In this regime, the transport properties are de-
scribed by a generalized Usadel equation, which we will now
derive. The resulting Usadel equation is similar to the one in
Ref. 5, but important nontrivial new terms essential for the
effects we discuss are added due to the Zeeman interaction
HZ�r�=�zHz�r�+�yHy�r�, where Hz �Hy� are the perpendicu-
lar �in-plane� components of the Zeeman field. We start from
the anomalous retarded thermal equilibrium Green function
F���r ,k ,��, which is the Fourier transform of
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with respect to the relative coordinate � and relative time t
− t�. It is convenient to use a singlet-triplet basis representing
the Green’s function,

F��̄ =
1
	2

����F0 + ���
z Fs� +

���
+

2
F+1 +

���
−

2
F−1, �2�

where �̄ denotes a spin projection opposite to �, ���
�

=���
x � i���

y . Fs denotes the singlet component. F0 and F�1
are triplet components corresponding to 0 and �1 projec-
tions of the Cooper pair’s total spin on the z axis. Using a
standard method starting from Gor’kov equations10,11 and as-
suming low SN barrier transmittance, we derive the linear-
ized diffusion equation
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where subscripts n and m attain the values 0, �1, or s, � is
the elastic scattering time and

K = 2� − vq̂ − 2Jhk − S − B . �4�

Here q̂=−i�, J is the 3�3 matrix spin 1 operator in the
triplet subspace, and operators S and B provide mixing of
triplet and singlet components,

S�1,s = − Ss,�1 = �
q̂
	2

�hk
�

�k
; B0,s = Bs,0 = 2Hz

B�1,s = − Bs,�1 = i	2Hy , �5�

where h�=hx� ihy. In the right-hand side of Eq. �3� �
=
kF and the unperturbed retarded Green’s functions are

G11/22
0 = �� � Ek − � · hk − �zHz � �yHy + i��−1. �6�

The diffusion equation can be derived from Eq. �3� by
expanding the operator �1− i�K�−1 for small �K and averag-
ing over k. The resulting Usadel equation is

2i�� = ��− iv · �+ 2J · hk�2�F� − M� , �7�

where the angular brackets denote averaging over the Fermi
surface. The matrix M originates from the SOI and the Zee-
man interaction expressed via the operators S and B. Its off-
diagonal terms describe singlet-triplet transitions. The rel-
evant matrix elements for our further analysis are

Mss = 2�3 

�=�

�bq̂
−�Hzaq̂

� + aq̂
−�Hzbq̂

��F,
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hk
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Ms0 = M0s = − 2iHz, �8�

where aq̂
�= q̂i�hk

� /�k̂i and bq̂
�=hk

��v · q̂� so that, e.g., the
singlet-singlet diagonal element is proportional to �x.

In order to understand some of the underlying physics
described by Eq. �7�, we will demonstrate that SOI in com-
bination with the Zeeman field gives rise to an effective
Meissner effect. Let us first discuss this in the most transpar-
ent “local” approximation when the SOI is strong enough/the
system long enough, so that the spin-diffusion length Lso

=	D /�so�L , 	D /T, where L is the length of the junction,
�so=2�h2�F is the spin-relaxation rate and D=vF

2� /2 is the
diffusion constant. In this approximation derivatives in triplet
parts of Eq. �7� can be disregarded, except in a narrow range
�Lso near the boundaries. Hz is assumed to vary slowly on
the Lso scale. Expressing the triplet components of � via the
singlet �s and substituting them into the singlet projection of
Eq. �7�, the latter takes the form

2i��s = − D�x
2�s + 2iA�x�s, �9�

where A is a real coefficient obtained from the equation

2iA�x = Mss +
1

�so



m=�1
MsmMms. �10�

Here we have only included dominant terms proportional to
�2�Hz /�y and �Hy. Higher order contributions to Eq. �9�
proportional to H2 and �4 have been disregarded.

The diffusion Eq. �9� demonstrates that cA /e is an effec-
tive weak-electromagnetic vector potential. Therefore, simi-
lar to the Meissner effect, it will induce a supercurrent. To
order A2 the solution of Eq. �9� is �s=�s

0 exp�ixA /D�,
where �s

0 satisfies Eq. �9� with A=0. The exponential factor
gives rise to an additional phase difference 
=LA /D be-
tween the superconducting terminals, the Josephson current
is jc sin��+
�, where � is the initial phase difference be-
tween the terminals and jc is the critical current determined
by the function �s

0. The coefficient A is simple for Rashba
SOI. For a parallel Zeeman field A=4��Hy. For a perpen-
dicular field it vanishes, which is expected since it is similar

Hz

S

S

N
x

y

z

FIG. 1. �Color online� An SNS Josephson junction. Interplay
between Rashba spin-orbit interaction and Zeeman splitting in a
normal 2D film �n� induces a phase difference between order pa-
rameters of two superconducting terminals �s�. An inhomogenous
Zeeman interaction can be created by, e.g., a ferromagnetic layer on
top of the film or magnetic impurities. Another possible configura-
tion �not shown� is a uniform field parallel to the y axis
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to the behavior of the spin Hall conductance. Continuing
such an analogy, one can expect that A�0 for the cubic
Dresselhaus13 SOI.12

In order to find a finite ISHE even for the Rashba SOI, we
must go beyond the local approximation. In this case, the
diffusion Eq. �7� cannot be reduced to simple form �9�. We
consider superconducting leads with equal real order param-
eters � connected via two SN interfaces with a low transpar-
ency t. The barriers are assumed to extend into the 2DEG
under the superconducting leads, so that the range of a free-
electron motion is between xL and xR at the left and right
leads, respectively. Depending on contact fabrication, other
models can be similarly studied. For example, the electrons
in the 2DEG could move freely underneath the contacts, with
the barriers present only in z direction, as shown in Fig. 1.
The choice of the model is not important for the main quali-
tative results obtained below.

To the lowest order in the tunneling transparency t, the
superconducting current can be expressed14 as a sum over
Matsubara frequencies �=�2n+1�T,

j =
eT

2Rb
2NF



�

�2

�2 + �2 Im�� dydy�fss�rL,rR��� , �11�

where Rb is the boundary resistance,15 rL/R= �xL/R ,y� and
fab�rL ,rR��, with a ,b=0, �1, s, is the Green’s function of Eq.
�7�, i.e., a solution of Eq. �7� with a delta source in its right-
hand side. The equations for retarded and advanced functions
must be properly continued to the upper and lower complex
semiplanes of �, respectively. Treating M in Eq. �7� pertur-
batively one can express the correction to fss

�0��rL ,rR�� as

�fss�rL,rR�� = −� drfss
�0��rL,r�Mssfss

�0��r,rR� + 

mm�

� dr1dr2fss
�0�

��rL,r1�Msmfmm�
�0� �r1,r2�Mm�sfss

�0��r2,rR�� , �12�

where the unperturbed diffusion propagators fss
�0��r ,r�� and

fmm�
�0� �r ,r��, with m ,m�=0 or �1, are obtained from Eq. �7�

with hard-wall boundary conditions, �xfss
�0�→0 at x=xL and

x=xR, while the triplet components in the case of Rashba
SOI satisfy the boundary condition �iLso�x+2Jy�f =0.16

To illustrate the ISHE, we consider the case of Rashba
SOI with finite Hz, Hy =0, and ���. The parameter of in-
terest is the effective phase difference between superconduct-
ing terminals,


eff =


�
�2

�2+�2 Im�� dydy�fss�rL,rR���

�

�2

�2+�2 Re�� dydy�fss
0 �rL,rR��� . �13�

At 
eff�1 this parameter allows to express Eq. �11� in the
form j= jc sin 
eff. From Eq. �7�, 
eff=C�, where C
=2l�yHz� /kFL and �yHz denotes the average value of the
magnetic field gradient in the contact range. � is shown in
Fig. 2 as a function of ratio of the spin-relaxation rate �so
=2��2kF

2 versus the Thouless energy ET=D /L2. For large
SOI the “local” approximation is obtained by using the ap-
proximate form of f�1�1=2f00=−��r1−r2� /�so in the second

term of Eq. �12�. In this case both terms in Eq. �12� are
proportional to �2 and precisely cancel each other, as in the
r.h.s. of Eq. �10�. Beyond this leading “local” approximation
there are terms increasing slower than �2. They contribute to
Fig. 2.

Larger Zeeman fields cannot be treated perturbatively. A
strong depairing effect takes place when the characteristic
length LZ=	D /2H is small, LZ�min�L ,Lso�. Then, for H
=Hz, both �s and �0 decay exponentially near contacts with
superconducting terminals and the latter become effectively
disconnected. On the other hand, as it follows from Eq. �7�,
��1 components are not subject to the depairing effect and
can propagate at the relatively large distance �Lso. Such a
long-range triplet effect has been studied in SFS junctions,
where a link between triplet and singlet Cooper pairs has
been induced by an inhomogeneous �rotating� magnetization
�see Ref. 11 and references therein�. In our case, a coupling
of ��1 to �0 and �s can be provided by SOI through the
matrix elements M�1s and the spin precession operator
R�1,0=−i4��J�1,0 ·hk��v ·���F originating from the first
term in the right-hand side of Eq. �7�. Indeed, assuming that
Hz��so and ET, it is easy to show that modified Eq. �12� is
represented by its second term, where the integrand has the
form

fs0
�0��xL,x�R0mfmm

�0� �x,x��Mmsfss
�0��x�,xR� . �14�

The unperturbed functions fs0
�0� and fss

�0� are obtained from s
and 0 projections of Eq. �7�, where the precession term and
all Mij, except Ms0 and M0s are ignored. The physics of the
process described by Eq. �14� is clear: the magnetic field
mixes 0-triplet and singlet components of the pairing func-
tion within the short range near the left boundary. Further,
due to the spin precession in the SOI field the 0-triplet trans-
forms to �1 triplet components. The latter propagate to the
right contact where they convert to the singlet through M�1s.
Integrating Eq. �14� over x and x� gives a power-law depen-
dence of Im��fss�xL ,xR�� on the magnetic field,

Im��fss�xL,xR�� � ��Hz�y1��−3/2 − �Hz�y2��−3/2� , �15�

where y1 and y2 are y coordinates of the junction edges.
Accordingly, at Lso�L and �y1−y2��L an order-of-
magnitude evaluation of 
eff can be written as
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FIG. 2. �Color online� The phase difference versus a ratio of the
spin-relaxation rate and the Thouless energy, at 0.5�kBT /ET�8.
The parameter C is described in the text.
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eff �
l3

2Lso
2 L

�

kFl
�� Hc

Hz�y1�
�3/2

− � Hc

Hz�y2�
�3/2� , �16�

where 2Hc=D /Lso
2 =�so and � is shown at Fig. 2.

In contrast to a perpendicular Zeeman field, in a parallel
field �1 triplets exponentially decay near boundaries, as can
be seen from Eqs. �7� and �8�. So they cannot provide a
long-range link between superconducting terminals.

In conclusion, an analog to the ISHE exists in dc Joseph-
son SNS junctions. Unlike the normal ISHE, the supercur-
rent through the SNS contact can be induced by a static
Zeeman interaction by magnetic or exchange fields oriented
normal to the 2DEG and varying in the direction transverse
to the electric current. A destructive depairing effect of the
strong Zeeman field is diminished by Rashba SOI leading to
a power-low dependence on this field. We show that a super-
current through the junction can also be induced by a uni-

form parallel Zeeman field, corroborating thus the numerical
analysis of Ref. 7. On the other hand, the depairing effect of
such a field was found to be strong �exponential�. In both
cases an appearance of the supercurrent can be explained in
terms of the Meissner effect produced by an effective vector
potential, which is a combined effect of the Zeeman field and
Rashba spin-orbit interaction.

We considered the diffusive transport regime which is rel-
evant in low mobility metals and �magnetic� semiconductors.
Furthermore, the diffusive regime, allows an elucidation of
the main physics and parameters governing this phenomena.
We expect a strong Josephson ISHE in ballistic junctions
containing a metallic normal layer with a strong Rashba in-
teraction, for example in Bi films on some substrates.17 Bal-
listic quantum wells of narrow gap semiconductors are also
expected to exhibit an increased Josephson ISHE.
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